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ABSTRACT

Nonnegative Matrix Factorization (NMF) has been widely used in
computer vision and pattern recognition. It aims to find two non-
negative matrices whose product can well approximate the original
matrix, which naturally leads to parts-based representation. In this
paper, we propose a Two Dimensional Nonnegative Matrix Factor-
ization (2DNMF), specifically for a sequence of matrices. In contrast
to NMF which applies for only a single matrix, and finds only one
base matrix, 2DNMF aims to find two base matrices to represent the
input matrices in a low dimensional matrix subspace. It not only
inherits the advantages of NMF, but also owns the properties low
computational complexity, as well as high recognition accuracy. Ex-
periments on benchmark image recognition data sets illustrate that
the proposed method is very effective and efficient.

Index Terms— Two Dimensional, Nonnegative Matrix Factor-
ization, Feature Extraction

1. INTRODUCTION

Dimensionality reduction is an important topic in computer vision
and pattern recognition. In the past decades, many dimensionality
reduction methods have been proposed, e.g. Principal Component
Analysis (PCA) [1]. Recent years, nonnegative and sparse repre-
sentations have witnessed increasing interest, in which Nonnegative
Matrix Factorization (NMF) [2] is one of the most representative
works. NMF aims to find two nonnegative matrices whose product
can well approximate the original matrix, which naturally leads to
parts-based representation.

The methods discussed above are all based on vector data. How-
ever, many real world data, e.g. image, is usually represented by
matrix. Conventional treatment to this kind of data is to vectorize
each matrix to a vector, and combine them column by column to
form a single large matrix, then traditional dimensionality reduction
is applied. However, when the data matrix is transformed into a vec-
tor, the data is usually represented in a very high dimensional feature
space, which may result in the curse of dimensionality. Furthermore,
the intrinsic spatial structure in the data matrices will be lost. Sev-
eral works have been done to generalize PCA to apply for matrices
[3] [4]. As to NMF, [5] proposed a nonnegative matrix set factoriza-
tion (NMSF), which finds one common base matrix for all the input
matrices.

In this paper, we propose a Two Dimensional Nonnegative Ma-
trices Factorization (2DNMF), specifically for a sequence of matri-
ces. In contrast to NMF which applies for only a single matrix, and
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finds only one base matrix, 2DNMF aims to find two base matrices
to represent the input matrices in a low dimensional matrix subspace.
It not only inherits the advantages of NMF, but also owns the prop-
erties of low computational complexity, as well as high recognition
accuracy. Compared with NMSF which finds only one common base
matrix, 2DNMF pursues two common base matrices, which is more
natural and reasonable for matrices and can explicitly give the bases
[4]. We will show that 2DNMF can be optimized in an iterative
way, and its convergence is theoretically guaranteed. Both theoreti-
cal analysis and empirical experiments on benchmark image recog-
nition data sets illustrate that the proposed method is very effective
and efficient.

The remainder of this paper is organized as follows. In Section
2, we briefly review NMF. In Section 3, we present 2DNMF and
its optimization algorithm, followed with theoretical analysis. The
experiments on benchmark image recognition databases are demon-
strated in Section 4. Finally, we draw a conclusion in Section 5.

2. A BRIEF REVIEW OF NMF

Given a data matrix X = [x1, . . . ,xN ] ∈ R
d×N
+ , each column of

X is a data point. NMF aims to find two nonnegative matrices U ∈
R

d×m
+ and V ∈ R

N×m
+ which minimize the following objective

JNMF = ||X − UVT ||2F ,

s.t. U ≥ 0,V ≥ 0, (1)

where || · ||F is Frobenius norm. We usually call U as base matrix,
and V as coefficient matrix. To optimize the objective in Eq.(1), [6]
presented an iterative update algorithm as follows

Uij ← Uij
(XV)ij

(UVT V)ij

Vij ← Vij
(XT U)ij

(VUT U)ij
(2)

3. TWO DIMENSIONAL NONNEGATIVE MATRIX
FACTORIZATION

In this section, we will present 2DNMF for the data represented by
a sequence of matrices.

3.1. Problem Formulation

Given a sequence of matrices, i.e. {Xn}N
n=1 ∈ R

r×c
+ , 2DNMF aims

to find two nonnegative transformation matrices U ∈ R
r×l1
+ and

V ∈ R
c×l2
+ , and N nonnegative matrices Dn ∈ R

l1×l2
+ , such that
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UDnVT is a good approximation of Xn, for all n. Mathematically,
we can formulate this as the following minimization problem

J2DNMF =

N∑
n=1

||Xn − UDnVT ||2F ,

s.t. U ≥ 0,Dn ≥ 0,V ≥ 0, ∀n, (3)

where || · ||F is Frobenius norm.

3.2. Optimization

In the following, we will give the solution to Eq.(3).
Since U ≥ 0,V ≥ 0 and Dn ≥ 0, we introduce the Lagrangian

multiplier α ∈ R
r×l1, β ∈ R

c×l2 and γ ∈ R
l1×l2, thus, the La-

grangian function is

L(U,V,Dn) =

N∑
n=1

||Xn − UDnVT ||2F

− tr(αUT ) − tr(βVT ) − tr(γDT
n )

Setting ∂L
∂U

= 0, ∂L
∂V

= 0 and ∂L
∂Dn

= 0, we obtain

α =

N∑
n=1

(−2XnVDT
n + 2UDnVT VDT

n )

β =

N∑
n=1

(−2XT
nUDn + 2VDT

nUT UDn)

γ = −2UT XnV + 2UT UDnVT V

Using the Karush-Kuhn-Tucker condition [7], αijUij = 0, βijVij =
0 and γij(Dn)ij = 0, we get

[

N∑
n=1

(−XnVDT
n + UDnVT VDT

n )]ijUij = 0

(

N∑
n=1

(−XT
nUDn + VDT

nUT UDn))ijUij = 0

(−UT XnV + UT UDnVT V)ijUij = 0 (4)

Eq.(4) leads to the following updating formulas

Uij ← Uij

√
[
∑N

n=1(XnVDT
n )]ij

[
∑N

n=1(UDnVT VDT
n )]ij

Vij ← Vij

√
[
∑N

n=1(X
T
nUDn)]ij

[
∑N

n=1(VDT
nUT UDn)]ij

(Dn)ij ← (Dn)ij

√
[UT XnV]ij

[UT UDnVT V]ij
(5)

3.3. Convergence Analysis

In this subsection, we will investigate the convergence of the updat-
ing formulas in Eq.(5). We use the auxiliary function approach [6]
to prove the convergence. Here we first introduce the definition of
auxiliary function [6].

Definition 3.1. [6] Z(h, h′) is an auxiliary function for F (h) if the
conditions

Z(h, h′) ≥ F (h), Z(h, h) = F (h),

are satisfied.

Lemma 3.2. [6] If Z is an auxiliary function for F , then F is non-
increasing under the update

h(t+1) = arg min
h

Z(h, h(t))

Proof. F (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = F (h(t))

Theorem 3.3. Let

J(U) =

N∑
n=1

tr(−2DnVT XT
nU + UDnVT VDT

nUT )

= tr(−2EU + UFUT )

where E =
∑N

n=1(DnVT XT
n ) and F =

∑N
n=1(DnVT VDT

n ).
Then the following function

Z(U,U′) = −2
∑
ij

(ET )ijU
′
ij(1 + log

Uij

U′
ij

) +
∑
ij

(U′F)ijU
2
ij

U′
ij

is an auxiliary function for J(U). Furthermore, it is a convex func-
tion in U and its global minimum is

Uij = Uij

√
[
∑N

n=1(XnVDT
n )]ij

[
∑N

n=1(UDnVT VDT
n )]ij

(6)

Proof. For the limit of space, we omit it here.

Theorem 3.4. Updating U using Eq.(5) will monotonically de-
crease the value of the objective in Eq.(3), hence it converges.

Proof. By Lemma 3.2 and Theorem 3.3, we can get that J(U0) =
Z(U0,U0) ≥ Z(U1,U0) ≥ J(U1) ≥ . . . So J(U) is monotoni-
cally decreasing. Since J(U) is obviously bounded below, we prove
this theorem.

Theorem 3.5. Let

J(V) =

N∑
n=1

tr(−2XT
nUDnVT + VDT

nUT UDnVT )

= tr(−2GVT + VHVT )

where G =
∑N

n=1(X
T
nUDn) and H =

∑N
n=1(D

T
nUT UDn)

Then the following function

Z(V,V′) = −2
∑
ij

GijV
′
ij(1 + log

Vij

V′
ij

) +
∑
ij

(V′H)ijV
2
ij

V′
ij

is an auxiliary function for J(V). Furthermore, it is a convex func-
tion in V and its global minimum is

Vij = Vij

√
[
∑N

n=1(X
T
nUDn)]ij

[
∑N

n=1(VDT
nUT UDn)]ij

(7)

Proof. For the limit of space, we omit it here.

Theorem 3.6. Updating V using Eq.(5) will monotonically de-
crease the value of the objective in Eq.(3), hence it converges.

Proof. It is easy to prove by Lemma 3.2 and Theorem 3.5, hence we
omit it here.
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Theorem 3.7. Let

J(Dn) = tr(−2VT XT
nUDn + DT

nUT UDnVT V) (8)

Then the following function

Z(Dn,D′
n) = −2

∑
ij

(UT XnV)ij(Dn)′ij(1 + log
(Dn)ij

(Dn)′ij
)

+
∑
ij

(UT UDnVT V)ij(Dn)2ij
(Dn)′ij

is an auxiliary function for J(Dn). Furthermore, it is a convex func-
tion in Dn and its global minimum is

(Dn)ij = (Dn)ij

√
(UT XnV)ij

(UT UDnVT V)ij
(9)

Proof. For the limit of space, we omit it here.

Theorem 3.8. Updating Dn using Eq.(5) will monotonically de-
crease the value of the objective in Eq.(3), hence it converges.

Proof. It is easy to prove by Lemma 3.2 and Theorem 3.7, hence we
omit it here.

Note that there is no guarantee that Updating U, V and Dn

using Eq.(5) will converge to global optima.

3.4. Computational Complexity Analysis

In this subsection, we will analyze the computational complexity of
2DNMF, compared with NMF.

For 2DNMF, the total time complexity is O(t(3Nrc+5Ncl1 +
(5N + 3)cl2 + (6N + 3)rl1 + 2Nrl2 + 7Nl1l2 + Nl21 + Nl22))
where t is the number of iterations.

In contrast, the total time complexity of NMF is O(t(7rcm +
7Nm + 4Nrc)).

To give a concrete case study, we take the ORL data set with
p = 3 images for each individual for example, hence N = 120.
We set l1 = l2 = 20 for 2DNMF, and m = 400 for NMF. Then
the time complexity of 2DNMF is O(2, 186, 880t), while the time
complexity of NMF is O(3, 694, 720t). As a result, 2DNMF is more
efficient than NMF.

4. EXPERIMENTS

In this section, we will investigate the performance of the proposed
method for image recognition. We compare 2DNMF with PCA,
GLRMA [4], NMF and NMSF [5].

4.1. Data Sets

In our experiments, we use three standard image recognition
databases which are widely used as bench mark data sets in fea-
ture extraction literature.

The ORL face database1. There are ten images for each of the
40 human subjects, which were taken at different times, varying the
lightings, facial expressions and facial details. The original images
(with 256 gray levels) have size 92× 112, which are resized to 32×
32 for efficiency;

1http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data

The UMIST face database is a multiview database, consisting of
575 images of 20 people, each covering a wide range of poses from
profile to frontal views. In our experiments, the images were also
resized to 32 × 32;

The Coil20 data set2 contains 32 × 32 gray scale images of 20
3D objects viewed from varying angles, at the interval of 5 degrees,
resulting 72 images per object. The original images are resized to
32 × 32 for efficiency.

4.2. Parameter Settings

For each data set, we randomly divide it into training and testing
sets. In detail, for each individual in the ORL and UMIST data sets,
p = 2, 3, 4 images were randomly selected as training samples, and
the rest were used for testing, while for each individual in the Coil20
data set, p = 4, 6, 8 images were randomly selected as training sam-
ples. We use the images in the training set to learn a subspace, and
the recognition was performed in the subspace by Nearest Neigh-
bor (NN) Classifier. Since the training set was randomly chosen,
we repeated each experiment 20 times and calculated the average
recognition accuracy. In general, the recognition rate varies with the
dimensionality of the subspace. The best average performance ob-
tained as well as the corresponding dimensionality is reported.

The parameter l1 and l2 in GLRAM and 2DNMF as well as the
dimensionality in NMSF are set to the same value, denoted by l,
in all experiments, for simplicity, which is set by searching the grid
{1, 2, . . . , 20}. Correspondingly, the parameter m in PCA and NMF
is set by the grid {12, 22, . . . , 202} to obtain the same size of base
image.

4.3. Convergence

In this subsection, we will examine the convergence of 2DNMF. In
Fig. 1, we plot the objective function value in Eq.(3) with respect to
the number of iterations on the three data sets.

From Fig. 1, we can empirically verify that the updating formu-
las in Eq.(5) indeed converge, which is consistent with the theoretical
analysis in 3.3.

4.4. Recognition Capability

Given a testing image Xt ∈ R
r×c, the projection is computed as

follows.
For NMF, the projection is computed as U†vec(Xt) where

U† = (UT U)−1UT and vec(·) is the vectorization function.
For NMSF, the projection is computed as U†Xt.
For 2DNMF, the projection is computed as U†XtV.
Table 1 shows the experimental results of all the methods on the

three databases, where the value in each entry represents the average
recognition accuracy of 20 independent trials, and the number in
brackets is the corresponding l for GLRAM, NMSF and 2DNMF,
and

√
m for PCA, NMF.

It is clear that our method outperforms the other dimensionality
reduction methods significantly on all the three data sets.

4.5. Computational Time

In this subsection, we compare the computational efficiency of NMF
and 2DNMF. We plot the average training time of 20 independent
trials of NMF and 2DNMF on the three data sets with incremental
training samples in Fig. 2.

2http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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Fig. 1. The objective function value with respect to the number of iterations on the three data sets.

Table 1. Image Recognition accuracy of different algorithms on the three data sets. The number in brackets is the corresponding l for
GLRAM, NMSF and 2DNMF, and

√
m for PCA, NMF.

Data Set ORL UMIST Coil20

Method 2 Train 3 Train 4 Train 2 Train 3 Train 4 Train 4 Train 6 Train 8 Train

PCA 70.67(9) 78.88(11) 84.12(13) 61.40(7) 73.05(8) 77.96(9) 82.12(4) 86.78(4) 89.09(4)

GLRAM 71.28(20) 79.79(11) 84.77(16) 64.96(4) 77.47(4) 82.26(4) 82.39(6) 87.08(6) 89.59(6)

NMF 69.78(19) 78.27(6) 83.85(6) 57.05(9) 67.54(6) 74.03(6) 79.01(4) 85.09(4) 88.29(4)

NMSF 70.55(5) 80.89(7) 84.48(7) 61.11(8) 71.78(3) 77.57 (3) 81.26(5) 85.95(5) 88.43(5)

2DNMF 73.64(12) 82.11(11) 85.35(12) 71.55(7) 81.84(5) 85.94(7) 83.76(10) 87.70(7) 90.13(10)

Fig. 2. Training time on ORL (left), UMIST (middle) and Coil20 (right) data sets.

We can see that the computational cost of 2DNMF is less than
that of NMF, which is consistent with the theoretical analysis in 3.4.

5. CONCLUSIONS

In this paper, we propose a 2DNMF, specifically for a sequence of
matrices. It aims to find two base matrices to represent the input
matrices in a low dimensional matrix subspace. It not only inherits
the advantages of NMF, but also owns the properties of low com-
putational complexity as well as high recognition accuracy. Both
theoretical analysis and empirical experiments on benchmark image
recognition data sets illustrate that the proposed method is very ef-
fective and efficient.
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